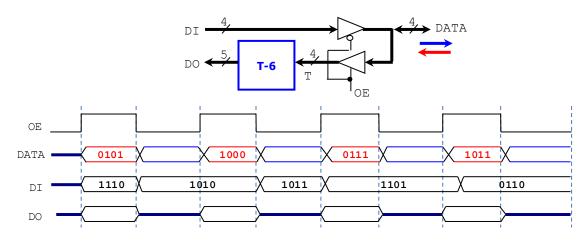
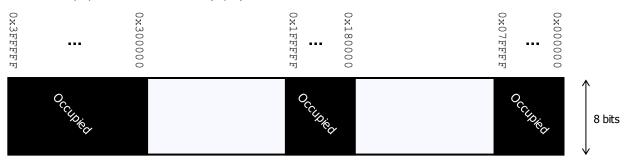
Homework 2


(Due date: October 7th @ 11:59 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (12 PTS)


Complete the timing diagram (signals DO and DATA) of the following circuit. The circuit in the blue box computes the signed operation T-6, with the result having 5 bits. T is a 4-bit signed (2C) number.

For example: if $T=1010 \rightarrow DO = 1010 - 0110 = 11010 + 11010 = 10100$.

PROBLEM 2 (20 PTS)

- a) What is the minimum number of bits required to represent: (2 pts)
 - ✓ 220,000 symbols? ✓ Numbers between (and including) 65,000 and 69,096?
- b) A microprocessor has a 24-bit address line. The size of the memory contents of each address is 8 bits. The memory space is defined as the collection of memory positions the processor can address. (6 pts)
 - What is the address range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? What is the size (in bytes, KB, or MB) of the memory space? $1KB = 2^{10}$ bytes, $1MB = 2^{20}$ bytes, $1GB = 2^{30}$ bytes. (2 pts)
 - A memory device is connected to the microprocessor. Based on the memory size, the microprocessor has assigned the addresses 0xC80000 to 0xCBFFFF to this memory device.
 - What is the size (in bytes, KB, or MB) of this memory device?
 - What is the minimum number of bits required to represent the addresses only for this memory device?
- c) The figure below depicts the entire memory space of a microprocessor. Each memory address 0xCBFFFF occupies one byte. (12 pts)
 - What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor? (2 pts)
 - If we have a memory chip of 512KB, how many bits do we require to address 512KB of memory?
 - We want to connect the 512KB memory chip to the microprocessor. For optimal implementation, we must place those 512KB in an address range where every single address shares some MSBs (e.g.: 0x000000 to 07FFFF). Provide a list of all the possible address ranges that the 512KB memory chip can occupy. You can only use the non-occupied portions of the memory space as shown below. (8 pts)

8 bits

.

0xC80000

0xC80001

. . .

. . .

. . .

PROBLEM 3 (34 PTS)

- In ALL these problems (a, b, c, d), you MUST show your conversion procedure. **No procedure = zero points**.
 - a) Convert the following decimal numbers to their 2's complement representations: binary and hexadecimal. (12 pts) \checkmark -97.125, 63.3125, -64.65625, -71.25.
 - b) We want to represent integer numbers between (and including) -16384 to 16384 using the 2C representation. What is the minimum number of bits required? (2 pts)
 - c) Complete the following table. The decimal numbers are unsigned: (6 pts)

Decimal	BCD	Binary	Reflective Gray Code
269			
		101011010	
			101110011
		1100110	
			1011001
	011010000111		

d) Complete the following table. Use the fewest number of bits in each case: (14 pts)

	REPRESENTATION				
Decimal	Sign-and-magnitude	1's complement	2's complement		
		101111			
-257					
			0100000		
64					
		111111			
			1011111		
	1011111				

PROBLEM 4 (34 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (8 pts)

Example ((n=8):
-----------	--------

✓ 54 + 210 ¹ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\checkmark 77 - 194$ Borrow out! $\qquad \qquad $
54 = 0x36 = 0 0 1 1 0 1 1 0 + 210 = 0xD2 = 1 1 0 1 0 0 1 0	$77 = 0 \times 4D = 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$
Overflow! > 1 0 0 0 0 1 0 0 0	1 0 0 0 1 0 1 1
 ✓ 221 + 117 ✓ 76 + 175 	 ✓ 93 - 128 ✓ 130 - 43

b) We need to perform the following operations, where numbers are represented in 2's complement (2C): (20 pts)

\checkmark	43 - 130
\checkmark	156 + 359

✓ 87 - 62

✓ 126 - 91

✓ -127 - 66

- For each case:
 - ✓ Determine the minimum number of bits required to represent both summands. You might need to sign-extend one of the summands, since for proper summation, both summands must have the same number of bits.
 - \checkmark Perform the signed (2C) binary addition. The result must have the same number of bits as the summands.
 - ✓ Determine whether there is overflow by:
 - i. Using c_n, c_{n-1} (carries).
 - ii. Performing the operation in the decimal system and checking whether the result is within the allowed range for n bits, where n is the minimum number of bits for the summands.
 - ✓ If we want to avoid overflow, what is the minimum number of bits required to represent both the summands and the result?
- c) Get the multiplication results of the following numbers that are represented in 2's complement arithmetic with 4 bits. (6 pts)
 ✓ 0101×0101, 1011×0111, 1010×1110.